skip to main content


Search for: All records

Creators/Authors contains: "Yu, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We conducted multi-epoch, multifrequency parsec-scale studies on the gigahertz-peaked spectrum quasar PKS 0858 − 279 with the Very Long Baseline Array (VLBA). Our observations on 2005 November 26 elucidated a weak core, characterized by an inverted spectrum, and a distinctly bent jet that exhibited a notable bright feature in its Stokes I emission. Through comprehensive analysis of polarization and spectral data, we inferred the formation of a shock wave within this feature, stemming from interactions with a dense cloud in the ambient medium. In this paper, Very Long Baseline Interferometry-Gaia astrometry further reinforces the core identification. With a deep analysis of six additional VLBA epochs spanning from 2007 to 2018, we observed that while the quasar’s parsec-scale structure remained largely consistent, there were discernible flux density changes. These variations strongly imply the recurrent ejection of plasma into the jet. Complementing our VLBA data, RATAN-600 observations of the integrated spectra suggested an interaction between standing and travelling shock waves in 2005. Moreover, our multi-epoch polarization analysis revealed a drastic drop in rotation measure values from 6000 to 1000 rad m−2 within a single year, attributable to diminishing magnetic fields and particle density in an external cloud. This change is likely instigated by a shock in the cloud, triggered by the cloud’s interaction with the jet, subsequently prompting its expansion. Notably, we also observed a significant change in the magnetic field direction of the jet, from being perpendicular post its observed bend to being perpendicular prior to the bend – an alteration possibly induced by the dynamics of shock waves.

     
    more » « less
  2. Abstract

    During 2013–16 and 2018–22, marine heatwaves (MHWs) occurred in the North Pacific, exhibiting similar extensive coverage, lengthy duration, and significant intensity but with different warming centers. The warming center of the 2013–16 event was in the Gulf of Alaska (GOA), while the 2018–22 event had warming centers in both the GOA and the coast of Japan (COJ). Our observational analysis indicates that these two events can be considered as two MHW variants induced by a basinwide MHW conditioning mode in the North Pacific. Both variants were driven thermodynamically by atmospheric wave trains propagating from the tropical Pacific to the North Pacific, within the conditioning mode. The origin and propagating path of these wave trains play a crucial role in determining the specific type of MHW variant. When a stronger wave train originates from the tropical central (western) Pacific, it leads to the GOA (COJ) variant. The cross-basin nature of the wave trains enables the two MHW variants to be accompanied by a tripolar pattern of sea surface temperature anomalies in the North Atlantic but with opposite phases. The association of these two MHW variants with the Atlantic Ocean also manifests in the decadal variations of their occurrence. Both variants tend to occur more frequently during the positive phase of the Atlantic multidecadal oscillation but less so during the negative phase. This study underscores the importance of cross-basin associations between the North Pacific and North Atlantic in shaping the dynamics of North Pacific MHWs.

     
    more » « less
  3. Abstract

    The interaction of airflow with complex terrain has the potential to significantly amplify extreme precipitation events and modify the structure and intensity of precipitating cloud systems. However, understanding and forecasting such events is challenging, in part due to the scarcity of direct in situ measurements. Doppler radar can provide the capability to monitor extreme rainfall events over land, but our understanding of airflow modulated by orographic interactions remains limited. The SAMURAI software is a three-dimensional variational data assimilation (3DVAR) technique that uses the finite element approach to retrieve kinematic and thermodynamic fields. The analysis has high fidelity to observations when retrieving flows over a flat surface, but the capability of imposing topography as a boundary constraint is not previously implemented. Here, we implement the immersed boundary method (IBM) as pseudo-observations at their native coordinates in SAMURAI to represent the topographic forcing and surface impermeability. In this technique, neither data interpolation onto a Cartesian grid nor explicit physical constraint integration during the cost function minimization is needed. Furthermore, the physical constraints are treated as pseudo-observations, offering the flexibility to adjust the strength of the boundary condition. A series of observing simulation sensitivity experiments (OSSEs) using a full-physics model and radar emulator simulating rainfall from Typhoon Chanthu (2021) over Taiwan are conducted to evaluate the retrieval accuracy and parameter settings. The OSSE results show that the strength of the IBM constraints can impact the overall wind retrievals. Analysis from real radar observations further demonstrates that the improved retrieval technique can advance scientific analyses for the underlying dynamics of orographic precipitation using radar observations.

     
    more » « less
  4. ABSTRACT

    An unidentified γ-ray source 4FGL J1838.2+3223 has been proposed as a pulsar candidate. We present optical time-series multiband photometry of its likely optical companion obtained with the 2.1-m telescope of Observatorio Astronómico Nacional San Pedro Mártir, Mexico. The observations and the data from the Zwicky Transient Facility revealed the source brightness variability with a period of ≈4.02 h likely associated with the orbital motion of the binary system. The folded light curves have a single sine-like peak per period with an amplitude of about three magnitudes accompanied by fast sporadic flares up to one magnitude level. We reproduce them modelling the companion heating by the pulsar. As a result, the companion side facing the pulsar is strongly heated up to 11300 ± 400 K, while the temperature of its back side is only 2300 ± 700 K. It has a mass of 0.10 ± 0.05 M⊙ and underfills its Roche lobe with a filling factor of $0.60^{+0.10}_{-0.06}$. This implies that 4FGL J1838.2+3223 likely belongs to the ‘spider’ pulsar family. The estimated distance of ≈3.1 kpc is compatible with Gaia results. We detect a flare from the source in X-rays and ultraviolet using Swift archival data and another one in X-rays in the eROSITA all-sky survey. Both flares have X-ray luminosity of ∼1034 erg s−1 which is two orders of magnitude higher than the upper limit in quiescence obtained from eROSITA assuming spectral shape typical for spider pulsars. If the spider interpretation is correct, these flares are among the strongest observed from non-accreting spider pulsars.

     
    more » « less
  5. SAGE3 is software to augment the cyberinfrastructure-enhanced research and education enterprise by supporting data-intensive collaboration across a wide range of display devices from high-resolution display walls to laptops. This paper provides insight into SAGE3’s implementation, which significantly improves on prior generations of SAGE by leveraging emerging advancements in Web technologies and Artificial Intelligence. We also provide an overview of new usage patterns that we observed with SAGE3. 
    more » « less
    Free, publicly-accessible full text available October 30, 2024
  6. SAGE3 is software to augment the cyberinfrastructure-enhanced research and education enterprise by supporting data-intensive collaboration across a wide range of display devices from high-resolution display walls to laptops. This paper provides insight into SAGE3’s implementation, which significantly improves on prior generations of SAGE by leveraging emerging advancements in Web technologies and Artificial Intelligence. We also provide an overview of new usage patterns that we observed with SAGE3. 
    more » « less
    Free, publicly-accessible full text available October 30, 2024
  7. SAGE3 is software to augment the cyberinfrastructure-enhanced research and education enterprise by supporting data-intensive collaboration across a wide range of display devices from high-resolution display walls to laptops. This paper provides insight into SAGE3’s implementation, which significantly improves on prior generations of SAGE by leveraging emerging advancements in Web technologies and Artificial Intelligence. We also provide an overview of new usage patterns that we observed with SAGE3. 
    more » « less
  8. ABSTRACT

    The Fermi catalogue contains about 2000 unassociated γ-ray sources. Some of them were recently identified as pulsars, including so-called redbacks and black widows, which are millisecond pulsars in tight binary systems with non- and partially-degenerate low-mass stellar companions irradiated by the pulsar wind. We study a likely optical and X-ray counterpart of the Fermi source 4FGL J2054.2+6904 proposed earlier as a pulsar candidate. We use archival optical data as well as Swift/XRT and SRG/eROSITA X-ray data to clarify its nature. Using Zwicky Transient Facility data in g and r bands spanning over 4.7 yr, we find a period of ≈7.5 h. The folded light curve has a smooth sinusoidal shape with the peak-to-peak amplitude of ≈0.4 mag. The spectral fit to the optical spectral energy distribution of the counterpart candidate gives the star radius of 0.5 ± 0.1 R⊙ and temperature of 5500 ± 300 K implying a G2–G9-type star. Its X-ray spectrum is well fitted by an absorbed power law with the photon index of 1.0 ± 0.3 and unabsorbed flux of ≈2 × 10−13 erg s−1 cm−2. All the properties of 4FGL J2054.2+6904 and its presumed counterpart suggest that it is a member of the redback family.

     
    more » « less
  9. ABSTRACT

    PSR J1641+8049 is a 2 ms black widow pulsar with the 2.2 h orbital period detected in the radio and γ-rays. We performed new phase-resolved multiband photometry of PSR J1641+8049 using the OSIRIS instrument at the Gran Telescopio Canarias. The obtained data were analysed together with the new radio-timing observations from the Canadian Hydrogen Intensity Mapping Experiment (CHIME), the X-ray data from the Spectrum-RG/eROSITA all-sky survey, and all available optical photometric observations. An updated timing solution based on CHIME data is presented, which accounts for secular and periodic modulations in pulse dispersion. The system parameters obtained through the light-curve analysis, including the distance to the source 4.6–4.8 kpc and the orbital inclination 56–59 deg, are found to be consistent with previous studies. However, the optical flux of the source at the maximum brightness phase faded by a factor of ∼2 as compared to previous observations. Nevertheless, the face of the J1641+8049 companion remains one of the most heated (8000–9500 K) by a pulsar among the known black widow pulsars. We also report a new estimation on the pulsar proper motion of ≈2 mas yr−1, which yields a spin-down luminosity of ≈4.87 × 1034 erg s−1 and a corresponding heating efficiency of the companion by the pulsar of 0.3–0.7. The pulsar was not detected in X-rays implying its X-ray-luminosity was $\lesssim$3 × 1031 erg s−1 at the date of observations.

     
    more » « less